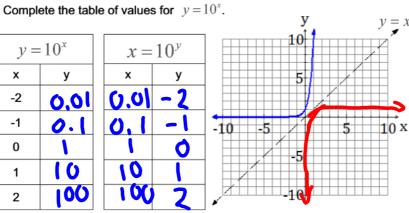
Logarithmic Functions

7.1: Characteristics of Logarithmic Functions with Base 10 and Base e

Investigation - Part A: The Common Logarithm

$y = 10^x$					
х	у				
-2	0,01				
-1	0.1				
0	1				
1	10				
2	100				

x =	$x = 10^{y}$				
x	у				
0.01	-2				
0,1	-				
	0				
10					
100	7				



2. How can you use the table to create a table of values for the new function

- 3. Sketch the graph of $x = 10^y$ on the same axes.
- 4. How are these two functions related?

What is the connection to the line y = x?

5. The equation of the second function, $x = 10^y$ can be rewritten in another

form called logarithmic form:

Unit 7 - Complete.notebook

6. Compare the characteristics of both functions:

	Exponential	Logarithmic
Domain X	XER	x>0,xeR
Range 📉	470,4E	N WE'R
y-intercept	コペミノ	none
x-intercept	nohe	x = \
Increasing/ Decreasing	increasing	increasing
End Behaviour	Q, to QI	Qu to Q.

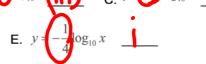
7. Use graphing technology to graph the following functions and match them with those provided on the graph below.

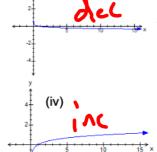
DESMOS

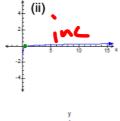
A.
$$y = \log_{10} x$$

B.
$$y = 4 \log_{10} x$$

D.
$$y = \frac{1}{4} pg_{10} x$$

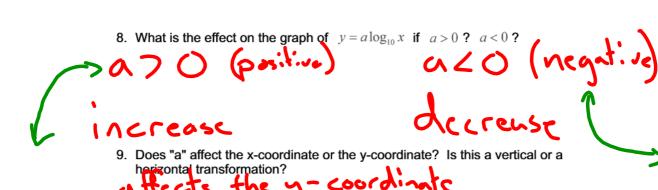








(iii)



10. Which point is easily identified from the graph?

10. Which point is easily identified from the graph?

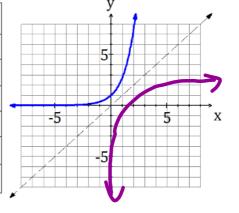
X-intercept!

Part B: The Natural Logarithm

1. Complete the table of values for $y = e^x$ and $x = e^y$.

Note: e is an irrational number like π where e = 2.71828... $y = (2.71828...)^x$

 $y = e^{x}$ $x \quad y$ $-2 \quad 0.1353$ $-1 \quad 0.3676$ $0 \quad 0$ $1 \quad 2.7182$ $x = e^{y}$ $x \quad y$ 0.353 - 2 0.3676 - 1 $0 \quad 0$ $2.7182 \quad 0$



M3201 - Section 7.1

2

3

Unit 7 - Complete.notebook

2. Sketch the graph of $x = e^y$ on the same axes. How does it compare to $y = e^x$?

refleted in the line y=X

3. The equation of the second function, $x = e^y$ can be rewritten in another

form called logarithmic form:

Self or Self or

4. Compare the characteristics of both functions:

Exponential Logarithmic

Domain

Range

y-intercept

x-intercept

Increasing/
Decreasing

End Behaviour

Exponential

Logarithmic

NO XER

XO XER

NO NZ

NO NZ

NO NZ

A CRASSING

A CRASSING

End Behaviour

Q 4 Q 4 Q

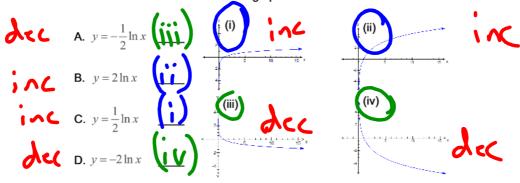
5. How do the characteristics of the function $y = \ln x$ compare to those of $y = \log_{10} x$? (Does it matter if the base is 10 or e?)

All of our charteristics are thesawl. Values for points are different.

M3201 - Section 7.1

Unit 7 - Complete.notebook

6. Match each function below with its graph:



SUMMARY:

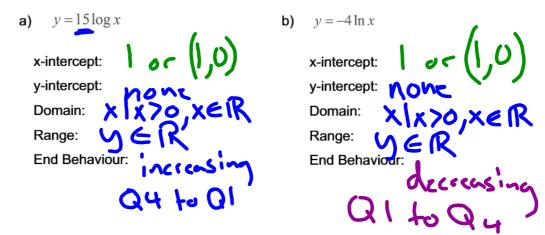
All logarithmic functions of the form $f(x) = a \log x$ and $f(x) = a \ln x$ have the following characteristics:

x- intercept	one (1, 0)				
Number of y - intercepts	none				
	1. Q4 to Q1 or	2. Q1 to Q4			
	if a > 0 (positive)	if a < 0 (negative)			
	increasing	decreasing			
	6 7 4 4 5 10 2 4 6 8 10 4 6 8 10	6 9 4 2 4 6 8 10 5 2 4 6 8 10			
Domain	$\{x / x > 0, x \in R\}$				
Range	$\{y \mid y \in R\}$				

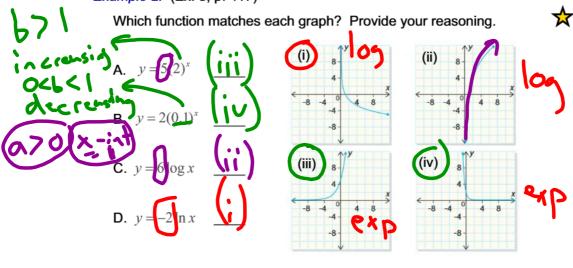
M3201 - Section 7.1 5

Example 1: (Ex. 1/2, p. 414/5)

Predict the x-intercept, the number of y-intercepts, the domain and the range, and the end behaviour of the following functions:



Example 2: (Ex. 3, p. 417)



Practice: p. 420 - 425, #2, 3, 5ace, 8

M3201 - Section 7.1 6

Section 7.2 Evaluating Logarithmic Expressions

A logarithmic function can be expressed as an exponential function and vice versa.

The expression $y = \log_b x$ means "the exponent that must be applied to base b to give the value of x.

Two Specific Types of Logarithms:

1. Common Logarithm: $y = \log_{10} x \iff x = 10^y$ or $y = \log x$

2. Natural Loagarithm: $y = \log_e x \quad \checkmark \longrightarrow \quad x = e^y$ or

NOTE

One way to convert from Exponential form to Logarithmic form is to remember:

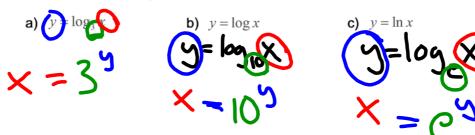
$$Base^{Exponent} = Number$$
 $\blacktriangleleft \cdots \blacktriangleright$ $\log_{Base} Number = Exponent$ $B^E = N$ the $\log_B N = E$

 $y = \ln x$

"Ben the Log Bunny"

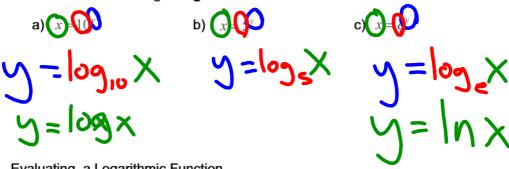
Example 1:

Convert the following to exponential form.

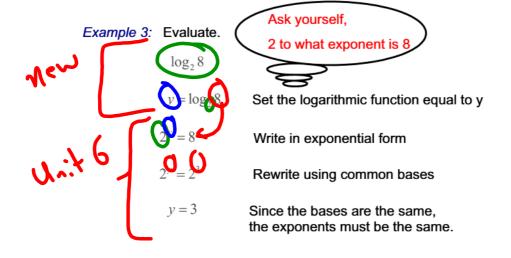


Example 2:

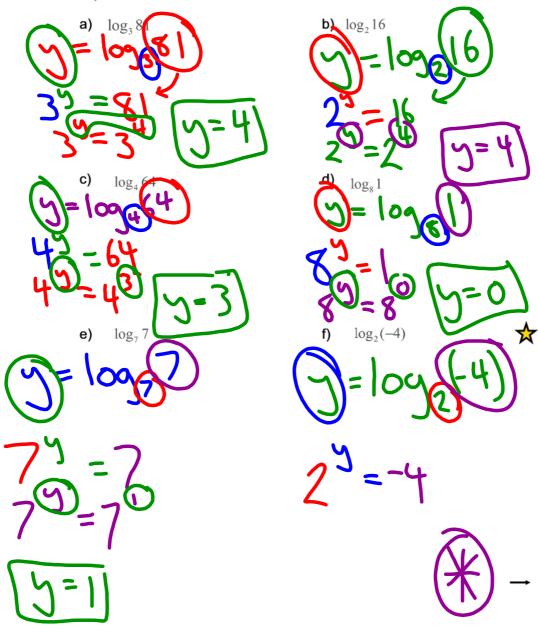
Convert the following to logarithmic form.



Evaluating a Logarithmic Function



Example 4: Evaluate.



Example 5: Evaluate.

$$y = |a| | y = |a|$$

Example 7:

Evaluate each using a calculator to two decimal places.

a) log85 ln 23

Example 8: (Ex. 2, p. 429)

Determine the value of y in each exponential equation.

Example 9.

Mary evaluated $\log(-3.24)$ on her calculator and an error message was displayed. Explain why an error message occurred.

Can't toke the log of a negative number

Practice: p. 436, #5 - 13

Solving Problems Involving Logarithmic Scales

Many real life situations have values that vary greatly. A logarithmic scale with powers of 10 can be used to make comparisons between large and small values more manageable.

Three examples of logarithmic scales are:

- 1. The Richter scale used to measure the magnitude of an earthquake.
- 2. The pH scale used to measure the acidity of a solution.
- 3. The Decibel scale used to measure sound level.

Example 1: See p. 433 for pH scale; 0 (acidic) - 14 (basic); pH = 7 is neutral

The pH, p(x), of a solution can be determined using the formula $p(x) = -\log x$ where the concentration of hydrogen ions, x, is measured in mol/L.

a) The hydrogen ion concentration of the solution is 0.0001 mol/L.

Calculate the pH of the solution.

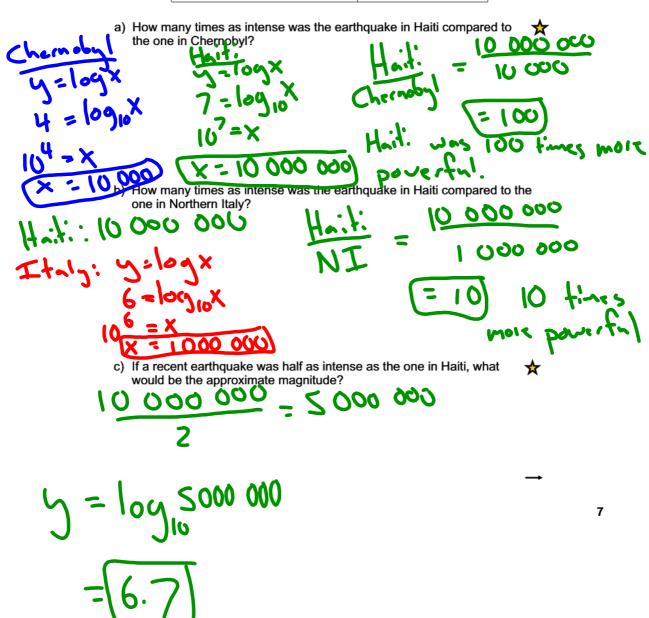
b) Calculate the hydrogenion concentration of lemo, juice (pH = 2).

c) How many time more acidic is Solution A, with a pH of 1.6, than Solution B, with a pH of 2.5? Round your answer to the nearest tenth.

Example 2:

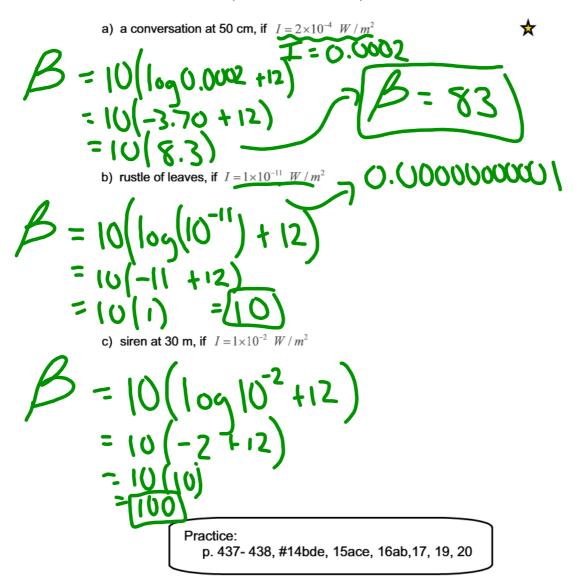
The magnitude of an earthquake, y, can be determined using $y = \log x$ where x is the amplitude of the vibrations measured using a seismograph. An increase of one unit in magnitude results in a 10-fold increase in the amplitude. Answer the following questions using the table below.

Location	Magnitude				
Chernobyl, 1987	4				
Haiti, January 12, 2012	7				
Northern Italy, May 20, 2012	6				



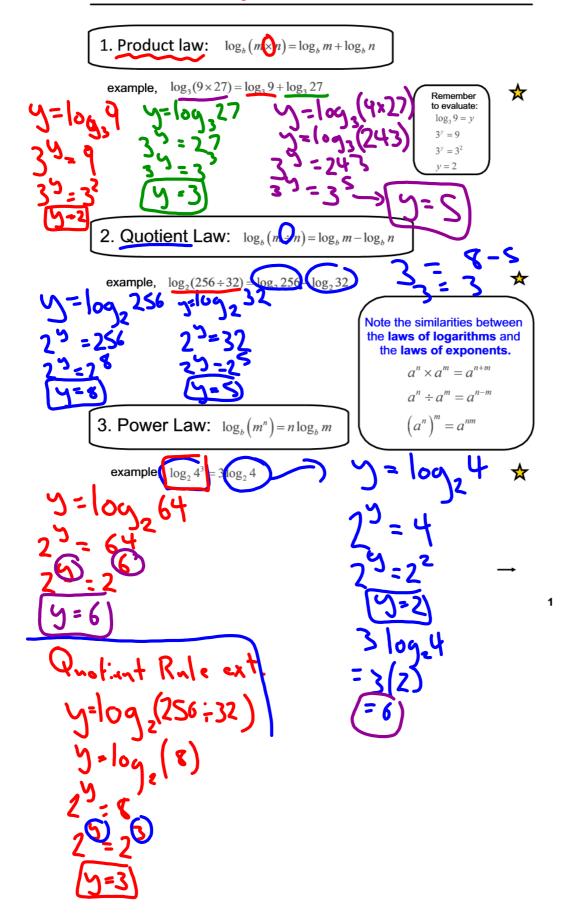
Example 3:

Sound levels are measured in decibels. The decibel scale is logarithmic and is defined by the equation $\beta = 10(\log I + 12)$ where β is the sound level in decibels, db, and I is the sound intensity in watts per square metre, W/m². What is the sound level, to the nearest decibel, of each sound?



M3201 - Section 7.3

Section 7.3 - Laws of Logarithms



Example 1:

Write as a single logarithm, then evaluate.

Your Turn:

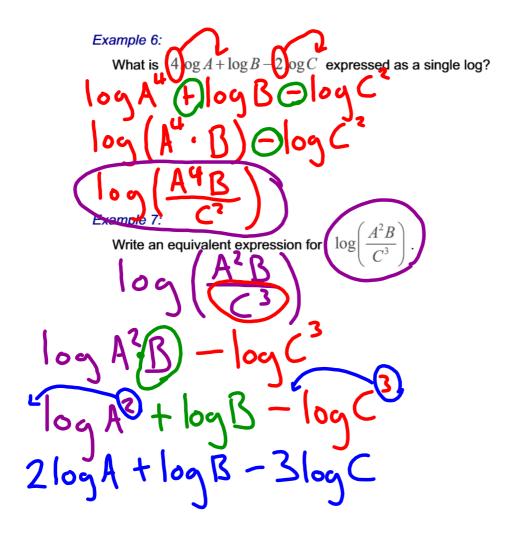
Write as a single logarithm, then evaluate.

a)
$$\log 12 \log 2$$
 $\log (12 \cdot 2)$
 $\log (100 \cdot 10 \cdot 10)$
 $\log (100 \cdot 10 \cdot 10)$
 $\log (100 \cdot 10 \cdot 10)$
 $\log (100 \cdot 10)$
 $\log (100$

Example 4: Error Analysis

Simplify: $\log_5 36 + 2\log_5 3$

Student 1:
$$\log_{3}36 + 2\log_{3}3$$
 $\log_{3}36 + 2\log_{3}3$ $\log_{3}36 + \log_{6}3^{2}$ $\log_{3}36 + \log_{6}6$ $\log_{3}36 + \log_{5}9$ $\log_{5}(36 \times 6)$ $\log_{5}(36 \times 6$



Practice:

p. 446-447, #1 - 7, 10 - 16 + Worksheet

Section 7.4: Solving Exponential Equations using Logarithms

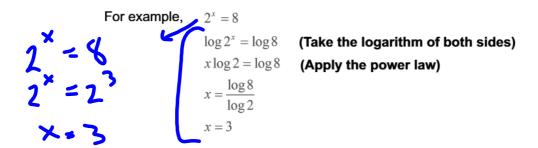
Recall in Unit 6 we solved exponential equations by writing with the same base and then equating the exponents.

For example,
$$2^x = 8$$

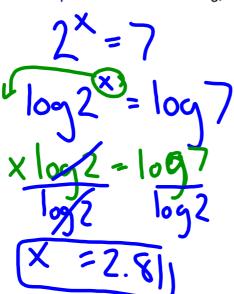
 $2^x = 2^3$
 $x = 3$

The same equation can be solved using logarithms.

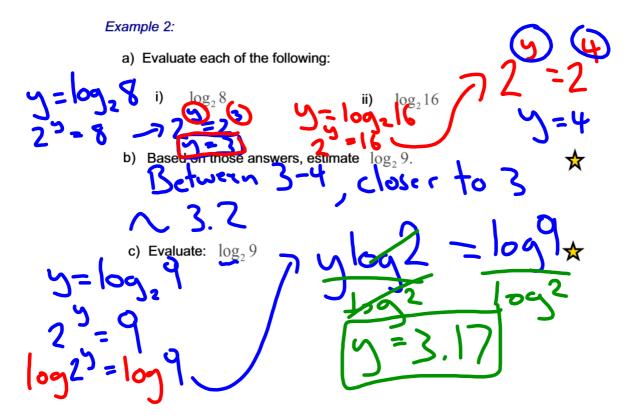
You can solve an exponential equation by taking the logarithms of both sides of the equation.



Example 1: Solve the following, $2^x = 7$



NOTE: This example cannot be solved by writing with the same base. It has to be solved using the "new" way!



Example 3: Evaluate
$$\log_2 100$$
 to three decimal places.

$$2^3 = 1000$$

$$2^3 = \log 100$$

$$\frac{1}{2} = \log 100$$

$$\frac{1}{2} = \log 100$$

2

Change of base formula:

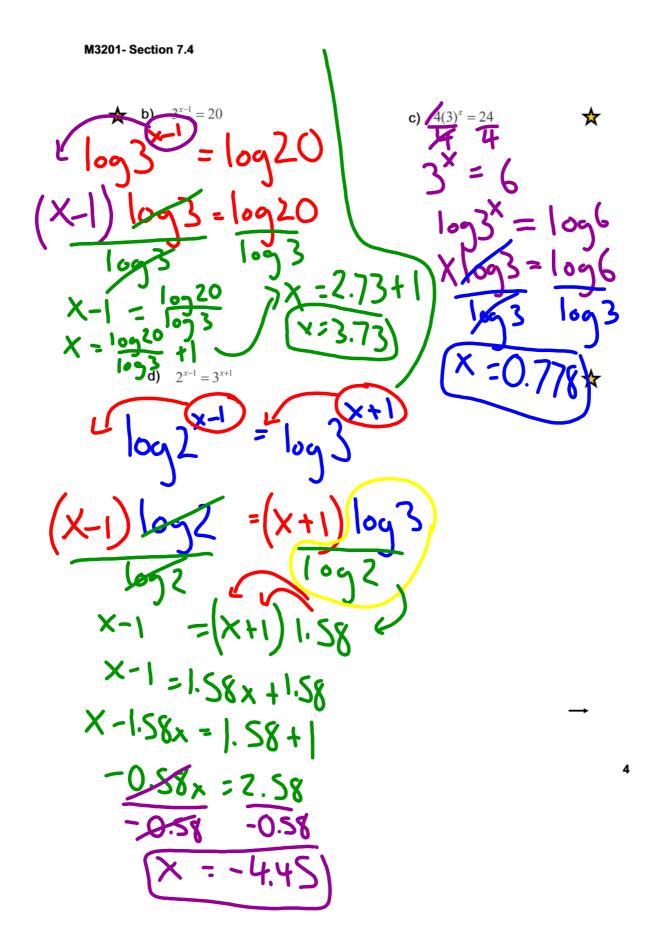
$$\log_b x = \frac{\log x}{\log b}$$

Example 4: Evaluate to 3 decimal places.

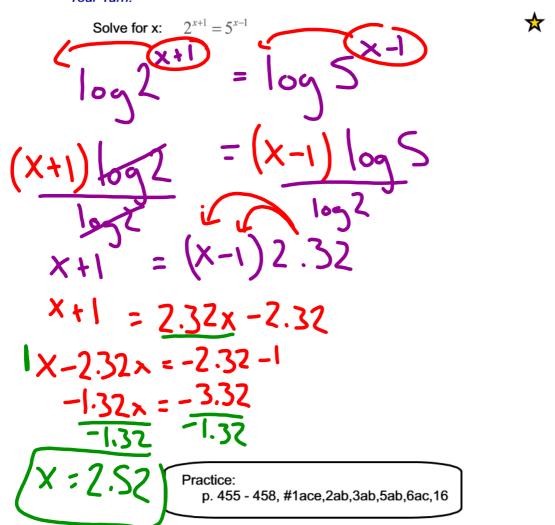
$$| \log_4 120 |$$
 $| \log_4 120 |$
 $| \log_4 120 |$

Example 5: Solve each of the following

a)
$$2^{x+1} = 32$$



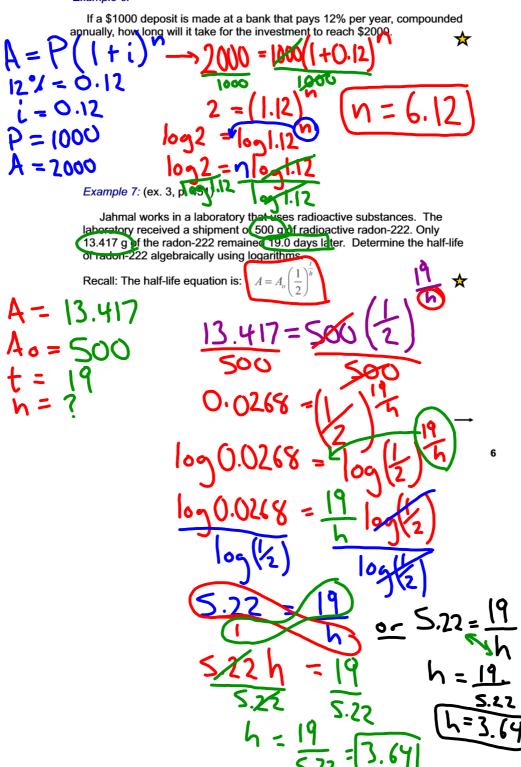
Your Turn:



Word Problems:

In the last unit we completed questions involving half-life, doubling life, compound interest, and depreciation where we could solve the exponential equations by writing with the same base. We will now revisit those questions with one difference - we will not be able to write with the same base therefore we will have to take the log of both sides to finish solving the problem.

Example 6:



Example 8: Error Analysis #8, p. 457

Dave thought that he could also solve the exponential equation in Example 1 by taking the logarithm of each side in the first step. However, he made an error in his solution. Correct Dave's error, and complete his solution.

Dave's Solution

 $A = P(1 + i)^n$

P = 3215i = 0.024

A = 5000

The number of compounding periods, n, is unknown.

 $\log 5000 = n \log (3215(1.024))$

log 5000 log (3215(1.024))

n = 1.051...It will take 2 years for the balance to reach \$5000.

I substituted the given values into the compound interest

I took the common logarithm of each side of the equation. I used the power law of logarithms to rewrite the equation.

I isolated n.

formula.

The interest is compounded annually, so I rounded up to

This answer is different from my first answer, and it seems

nych too small. Practice: p. 457, #10, 11, 12, 13 + Worksheet

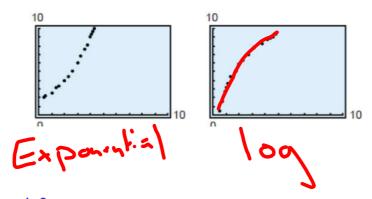
Section 7.5: Modelling Data Using Logarithmic Functions

NOTE:

- · Domain of a logarithmic function: all positive real numbers
- Logarithmic regressions are mostly used for phenomena that grow quickly at first then slow down over time but the growth continues to increase without bound.
- Exponential regressions are typically used on phenomena where the growth begins slowly then increases very rapidly as time increases.

Example 1

Which graph is exponential and which is logarithmic?



Example 2:

Create a scatterplot of the data to determine if we should use exponential or logarithmic regression.

x y	0.5	0.7 1.6	0.9 2.7	1.0 3.1	1.2 3.7	1.4 4.4	1.8 5.1	2.0 5.8	2.3 6.4	7.0	3.2 7.7	3.8 8.3	
								٠	,••• • ·	·			I
	•••	E	· X	>				•			0	9	_

1

Example 3:

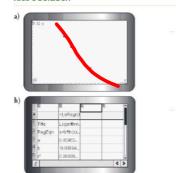
The flash on most digital cameras requires a charged capacitor in order to operate. The percent charge, Q_t remaining on a capacitor was recorded at different times, t_t after the flash had gone off.

The t.5 flash duration represents the time until a capacitor has only 50% of its initial charge. The t.5 flash duration also represents the length of time that the flash is effective, to ensure that the object being photographed is properly lit.

- a) Construct a scatter plot for the given data.
- b) Determine a logarithmic model for the data.
- c) Use your logarithmic model to determine the t.5 flash duration to the nearest hundredth of a second.

Percent Charge, Q (%)	Time, t(s)			
100.00	0			
90.26	0.01			
73.90	0.03			
60.51	0.05			
49.54	0.07			
40.56	0.09			

Rico's Solution



The equation is $y = 0.459... - 0.099...(\ln x)$.

At about 0.07 s, the t.5 flash duration has been reached.

NOTE: Most graphing calculators and spreadsheets provide the equation of the logarithmic regression function in the form:

 $y = a + b \ln x$

y = 0.459 - 0.99 Practice: p. 466-471, #2,3,4,7