Unit 7 - Complete.notebook

UNIT 7 Logarithmic Functions

7.1: Characteristics of Logarithmic Functions with Base 10 and Base e

Investigation - Part A: The Common Logarithm

\5 \0 1 Complete the table of values for y =10". v .
0 0\ y=10" x=10" et / 2
= . Y 5‘}:_:' Z1

4= 10" = ool 00V-2 S

i 0.\ O.l -\ 10 -;5::/ 5 110x
o [V V| o geats

1 1O\t |

2 | 100]| V00 2 |.” i

2. How can you use the table to create a table of values for the new function
x=10"? \
We N sw'.\'g\'\ *‘a’( x . o k3 Jotlw s ol
\}

owlC ¢C U"\\'a"‘s

3. Sketch the graph of x =10’ on the same axes.

4. How are these two functions related?

What is the connection to the line » _1'? ‘V
y "r‘,‘ 0?\\$ ace  WLr(ole P(gg&g(x
’ AL a9 =X

5. The equation of the second function, X = 10" can be rewritten in another

form called logarithmijc form:

\1\13 ocf\)x or %5‘0% X
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6. Compare the characteristics of both functions:

Exponential Logarithmic

Domain 3¢ 4 G R x >O’.Xé‘
e oy | W2 0,0efR WER
9 J < N

y-intemept ‘:\,g \ Wo he
x-intercept V\ OL\Q x - \

Increasing/

0 \ N
Decreasing INCSC “5‘\"\ INC TS tv\'\
4

End Behaviour (Q ! Q
7. Use graphing technology to graph the following functions m
and match them with those provided on the graph below.
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8. What is the effect on the graph of y=alog, x if ¢>07? a<0? \‘.
a 7 O @”.\\..J;S “ 4 O (V\(q& . Jc
)

INCleos< 0\( CORUST

9. Does "a" affect the x-coordinate or the y-coordinate? Is this a vertical or a
igontal transformation?

Aftects fhe ©- coorcx-m\'q
= el J rrﬂco\'u)\ A ;g—d\&'.g

10.  Which point is easily identified from the graph?

’ K- .‘ /\Sfc eccvs\' \

Part B: The Natural Logarithm

1. Complete the table of valuesfor y =¢" and x=¢" .

\3"- C;L Note: e is an irrational number like = where e = 2.71828... ¥ =(2-71828'")x
=0.\>—— 1
y=e X=e€ T E

x 5‘( x y st [ .
2 () 13sB | 0.3~ 2 /L
g 8738 0-3(K- 1 e
0 | \ o DT il > ’
1 |4 § (206 s
2 23¢9 23%1 2 | - v
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2. Sketch the graph of X = e’ on the same axes. How does it compare to

3. The equation of the second function, X = ¢’ can be rewritten in another

form called logarithmic form:

9= lnx_ « Yzalax

4. Compare the characteristics of both functions:

Exponential Logarithmic

Domain x é "K‘ X?Ollxéfk‘
Range 0\70" V\é_ ‘ b e m
y-intercept =/ \I\" J

x-intercept non G 2&-— \

Increasing/

A J s ‘
Decreasing | nCMas ‘AN [ VAC(erS-ny

End Behaviour Q2 -\-o Q \ - Qu‘ "'0 Q \‘

5. How do the characteristics of the function y =Inx compare to those of

v=log,,x ? (Does it matter if the base is 10 or e?)

A \\ Og\ ove¢ C—\’\GC\'&‘\'S\"Q acCe '\'L’(_.Saw.l.
o B i ort difcend
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6. Match each function below with its graph:

;’\C- B. v=2Inx

|J\C C. }Z—]nt

AL 0.y 2ix &Jl)

SUMMARY:

@ e

All logarithmic functions of the form  f(x)=alogx and f(x)=alnx

have the following characteristics:

x- intercept one (1, 0)

Number of y - intercepts none

1.Q4to Q1 or 2.Q1toQ4
if a > 0 (positive) if a < 0 (negative)

increasing decreasing
61 -6;
Domain {x/x>0,xeR}
Range {y/yeR}
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Example 1: (Ex. 1/2, p. 414/5)
Predict the x-intercept, the number of y-intercepts, the domain and the
range, and the end behaviour of the following functions:

a) y=I13logx b) y=—4Inx
i

x-intercept: \ or (‘ )0) x-intercept: ‘ of¢ O)

y-intercept: O T (K y-intercept: '\OV\:
Domain: X x7o xXé Domain: X X720 ,Xé ‘R
Range: \o & (KI Range: ‘Q ‘ z /

End Behaviour: *

M((hS‘ End Beha
' ~) ALC‘(ﬁ\s T

Q4 Yo Qf Q\,{.‘,quj

Example 2: (Ex. 3, p. 417)
b? \ Which function matches each graph? Provide your reasoning.

j}«Io‘) ) /’ \o’)

L

@ )

% , xQ‘
T - T B 17 e
4 8 8 -4 4 8

Practice:
p. 420 - 425, #2, 3, 5ace, 8
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Section 7.2 Evaluating Logarithmic Expressions

A logarithmic function can be expressed as an exponential function and vice

versa.
Iu&},‘C =h
A

\./

Logarithm = Exponent

The expression V =10g, X means "the exponent that

ive the value of x.

' must be applied to base b to

since 2° =%

for example, lo

Two Specific Types of Logarithms:

1. Common Logarithm: y=log,x deesp x=10
|—- Base 10 or
y=logx
2. Natural Loagarithm: y=log,x dq=ssp x=¢"

l . Base e or

y=Inx

NOTE:
One way to convert from Exponential form to Logarithmic form is to

remember:

Expone ,
Base™™"™" = Number <===» log, . Number = Exponent

B*=N the log;N=E

"Ben the Log Bunny"
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Example 1:
Convert the following to exponential form.

a)(}}lo@ b) yv=logx c) yv=Inx

Y
X =3

Convert the following to logarithmic form.

20PD 0 O P
V= log , K ¥)=log X \3 =\03ex

Ask yourself,

2 to what exponent is 8

G ]qﬁ Set the logarithmic function equal to y

G =38 Write in exponential form
an\ 2¥= 9 Rewrite using common bases

y=3 Since the bases are the same,
the exponents must be the same.






Unit 7 - Complete.notebook

’/3 7 <
— \ [}
v
\ \J
R G 2
! v
AL 5
) T wl on\vhl a—.\@?\ - %.
P P O.Im m~|0 P h (
57 o :.u./\u@Z !
E‘l)jll




Unit 7 - Complete.notebook

M3201 - Section 7.2

Example 7:
Evaluate each using a calculator to two decimal places.

a) log8&5 b) In23

LAY 3.\

Example 8: (Ex. 2, p. 429)
Determine the value of y in each exponential equation.

a,

Mary evaluated 10g(-3.24) on her calculStor and an error message was
displayed. Explain why an error message occurred.

(M\ Sfo\g A &

| Practice: p.436,#5-13 |
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Solving Problems Involving Logarithmic Scales

Many real life situations have values that vary greatly. A logarithmic scale
with powers of 10 can be used to make comparisons between large and small
values more manageable.

Three examples of logarithmic scales are:
1. The Richter scale - used to measure the magnitude of an earthquake.
2. The pH scale - used to measure the acidity of a solution.

3. The Decibel scale - used to measure sound level.

Example 1: See p. 433 for pH scale; 0 (acidic) - 14 (basic); pH =7 is ne

The pH, p(x), of a solution can be determined using the formula p{X)=—logx,
where the concentration of hydrogen ions, x, is measured in mol/L.

a) The hydrogen ion concentration of the solution is 0.0001 mol/L. x j‘,\(
——

P%) ”(i]kcuolatﬁeie pH of the solution. ’.’ ? (O.w’\s - q’
P(oposly < -l

b) Calculate the hydroge X oncem(ation of | juice (pH =2).

c¢) How many time more aci olution A, with a pH of 1.6, than Solution B,
with a pH of 2.5? Round your answer to the nearest tenth.

.G f--\ocsx / .S’-“orgx

-I. 1)~ =X

I0_=X % 2000\ Sia B
X 2 (0.05 éﬁ_}‘\}* Jc'\J

<an A
S"\_"‘ A - O,Lls A 7%"\ *..Mt? we!<
So\n& 00031 m(‘.d‘,c, '\’\Mv\

SdaR)
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Example 2:

The magnitude of an earthquake, y, can be determined using » = logx
where x is the amplitude of the vibrations measured using a seismograph.
An increase of one unit in magnitude results in a 10-fold increase in the
amplitude. Answer the following questions using the table below.

Location Magnitude
Chernobyl, 1987 4
Haiti, January 12, 2012 7
Northern Italy, May 20, 2012 6

a) How many times as intense was the earthquake in Haiti compared to

c-k"‘“ .& \ the one in Che:rfbyl'? “o:“: ‘ &2

= WO

" .\ O )
,\oa..x Fleaet O
Lmﬂg* o et
How m.'alnyr times as Intens qudke in Haiti compared to the

one in Northern Italy?
\ A |0 00 dOL A \QM

Thaty. nyrloqx NT | ©90 009

6 <loay X 0 Kacs
Mot ?agn tQ\\

c) If arecent earlhquake was half as intense as the one in Haiti, what
would be the approxi (ste magnitude?

\O_000 092 _ <000 &0
2

\3 = | 03‘5000 000 7

( 6

KY (1]
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Example 3:

Sound levels are measured in decibels. The decibel scale is logarithmic
and is defined by the equation f =10(log/+12) where £ is the sound level
in decibels, b, and | is the sound intensity in watts per square metre, W/m?2.
What is the sound level, to the nearest decibel, of each sound?

a) a conversation at 50 cm, if 7 =2x10"" W /n’ *

A = 10(loq0 002 11 -
- \0((—3‘}70\* 1) m
= | :
b) m(ls)tlem?ea\é‘.,if I=1x10"" W /m’ _) 0.000“\)M)\

ﬁ =10 ‘03(‘0-") X \2

= 1o~ v2
=to{) =U0O

c) sirenat30m,if /=1x107 W/m’

ﬂ = \0(\041\61&\1>
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Section 7.3 - Laws of Logarithms

| 1. Product law: logb(ﬂgn):]oghmﬂoghn I

'ﬁ‘-‘-\os}eqxamp%’-\go(hl? :';"( ,(“"7-
vy 243
Py Wiy 1 z?%ﬁ )

w03 oy
2. Quotient Law: log, ( nO =log, m— IogF

PO ESRE
example log,(256 +32 log,32
\S '5‘ oc) 2

Note the similarities between

13 ZS‘ 2‘3; 3% the laws of logarithms and

the laws of exponents.
“.9%

3 a!’f xa#’f — aﬂ+m‘

m ©- S a’+a"=a"

EPOWGI’ Law: log, ( ) nlog, D (a")m =a™ /

ol example@:’/-j ‘3'= \oo)lq' *
oo b 9 "

EQ: % -z -
Q“s(‘ -&-\'\' Rv\\t 3 \o
\3\003 (256 37.

\:) lOg)z Z)

ZQ ®
=
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Example 1:
Write as a single logarithm, then evaluate.

o oD o Q).
\00) (S x(o\k\ \°‘3((Z ‘)

-\oo_\ (SE 21z~ (et
2 =2 K 0'50>
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Your Turn:
Write single logarithm, then evaluate.

a) lg10g2\ b) lg@lg@
|oo)(\ 2) |o¢3 \00"'")

(00_) 24 >C¢~f-‘3)" -‘Of@

\033 l‘& 5_—3 ’03;}0 Ibf) 2
‘3“|a33(27> A Qz @ lLoﬁt‘:g;\loc_\s
3 =27 923 (oos, S: .

e) g, (2)+log, (27) f), log(2.5)+ 2]g|0 '23.
loay 2 + log27 o, 2. *'°: oo,
logy 3. fory 27 og(25)0log 00 -log 2

loay (-5 6100) Blon 2
loo)S(ZSO)O °9) 1
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Example 4: Error Analysis

Simplify: log, 36+2log. 3

Student 1: log 36+ 2log, 3,/
log, 36+ log, 3° /
log,36+1o
log(36x6)

103 336 -L@f-;;}

\0353Q+ |0353

[ 03 36 @‘oﬁ)ﬁ
324

xample 5:
Express log @ hs a:
a) sum of two logs.

b) dlfferegm of two logs.

\2

o) X

Z
logé \o«:‘g

Student 2: log, 36+ 2log, 3/
log,36+log, 3’ «”
log 36 +log. 9

log,(34+y) x

log. 4

2

’ EEE——

3=6
>§) “ﬂcﬂ.\al‘("io)})
=

o -

—
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Example 6:
What is gA+logB gC expre %2 single log?

\o A ®|ooj B@‘°‘3C

\ N B)OlonC
‘ e )
003 — Or/.\
Joo 1O -\-\o 3"@@

2(0?)A ‘\' ‘033 3‘03

Practice:
p. 446-447,#1 -7, 10 - 16 + Worksheet




Unit 7 - Complete.notebook

M3201- Section 7.4

Section 7.4: Solving Exponential Equations using Logarithms

Recall in Unit 6 we solved exponential equations by writing with the same
base and then equating the exponents.

Forexample, - _g

The same equation can be solved using logarithms.

You can solve an exponential
equation by taking the logarithms
of both sides of the equation.

For example, , 2° =8

:

% - % / log2® =log® (Take the logarithm of both sides)
Z = xlog2 =log8 (Apply the power law)
2 Lt l X =
log 2

L-x=3

Example 1: Solve the following, 2% =7

o~

NOTE: This example *

cannot be solved by
x writing with the same
— base. It has to be solved
using the "new" way!
|0°32 = \O 7

X | = |o —
ol
X =2
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Example 2: @
a) Evaluate each of the following: §®
i s

b) Bas z'lmt
' Behoen Et g‘\iin Yo ¥

Example 3: Evaluate log, 100 to three decimal places. *
= \oclsz(OQ
23 =100

0/\‘3
03 2 \oej\OO

‘3‘%1 X

1 —-‘C(ﬁ )
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Change of base
formula:
log, x = log x
logh

Example 4: Evaluate to 3 decimal places.

a) log,120 b) lo@ e ‘EEE\S

- 20

THs) goid

Example 5: Solve each of the following

a) 27'=32

i) Using common bases i; Logarithms ﬁ'

2’(*\ :32 2 =32
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°'3
bff m \032

Xl = 232x-2.32

IX-232x =-232-!
- 1-32 = "332

~—~
>
&
"
A
'
—
X
:/
™

’

~132

X < ZSZ Practic
b. 455 - 458, #1ace, 2ab,3ab,5ab,6ac 16
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Word Problems:

In the last unit we completed questions involving half-life, doubling life,
compound interest, and depreciation where we could solve the exponential
equations by writing with the same base. We will now revisit those questions
with one difference - we will not be able to write with the same base therefore
we will have to take the log of both sides to finish solving the problem.

Example 6:
If a $1000 deposit is made at a bank that pays 12% per year, compounded

apnually, howlong wil it take for the investmenj to reach $20p]
n=P((F 3 — ) - @%9&) -
124 = Ol ‘° "
o 2 2(lR)! (n=6.12
P = (000 ,ogz loey.12 C ‘)
A =72000 loa2 =nloxt
Example 7: (ex. 3, S%"\L 12

Jahmal works in a laboratory th ses radioactive substances. The
aboesatgry received a shipment o @n )f radigactive radon-222. Only

f the radon-222 remained qgm .
dert. garitl

,'i"' 3417 \3.%\7-:3& (’7[:
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Example 8: Error Analysis #8, p. 457

Dave thought that he could also solve the exponential equation in
Example 1 by taking the logarithm of each side in the first step. However, he
made an error in his solution. Correct Dave's error, and complete his solution.

Dave’s Solution

A=P1+ )" [ substituted the given values into the compound interest
P = 3215 formula.

i= 0.024

A = 5000

The number of compounding
periods, #, is unk

000 =
g 5000 "024)") 1 took the common logarithm of each side of the equation.
log 5000 = n log (3215(1.024)) I used the power law of logarithms to rewrite the equation.
log 5000 )

" log (B215(1.024))  |isolated 7

n= 1.051...
[t will take 2 years for the The interest is compounded annually, so I rounded up to
balance to reach $5000. 2 years.

This answer is different from my first answer, and it seems

SO% e 3% ‘01‘{ g oo smal

Practice:
p. 457, #10, 11, 12, 13 + Worksheet
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Section 7.5:  Modelling Data Using Logarithmic Functions

NOTE:
* Domain of a logarithmic function: all positive real numbers

s Logarithmic regressions are mostly used for phenomena that grow
quickly at first then slow down over time but the growth continues to
increase without bound.

* Exponential regressions are typically used on phenomena where the
growth begins slowly then increases very rapidly as time increases.

Example 1:
Which graph is exponential and which is logarithmic?
10
10 10
n o n
\. a\ \
(=x P oa\

Example 2:
Create a scatterplot of the data to determine if we should use
exponential or logarithmic regression.

x 050709 |10)12|1.4)18|20(23]|27]32]3.8
¥y 05116273137 (44|51 ]|58|6.4]|7.0]|7.7]8.3
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Example 3:
The flash on most digiui cameras requires a t‘.‘l'ngCd capacitor in order to Percent
operate. The percent charge, Q, remaining on a capacitor was recorded at Charge, Q (%) [Time, t(s)
different times, ¢, after the flash had gone off. 100,00 0
The .5 flash duration represents the time until a capacitor has only 50% ofits 076 001
initial charge. The t.5 flash duration also represents the length of time that the :
flash is effective, to ensure that the object being photographed is properly lit. 1390 003
a) Construct a scatter plot for the given dara. 60.51 0.05
b) Determine a logarithmic mode] for the data. 49.54 0.07
¢) Use your logarithmic model to determine the .5 flash duration to the 1056 0.00

nearest hundredth of a second. L J

Rico's Solution

3 o I N

At about 0.07 s, the ©.5 flash duration has been reached.

NOTE: Most graphing calculators and
spreadsheets provide the equation of the
logagithmi i nction in the
for:

(=045 -0 e e |
~—)
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