Section 2.4 Exponent Laws I Product of Powers Investigation

Product of Powers	Repeated Multiplication	Power Form
10 ² x 10 ³	(10 x 10) x (10 x 10 x 10)	105
10 ³ x 10 ⁴	(10 x 10 x 10) x (10 x 10 x 10 x 10)	107
54 x 55	(5 x 5 x 5 x 5) x (5 x 5 x 5 x 5 x 5)	59
2 ³ x 2 ¹	(2 x 2 x 2) x (2)	24
3 ² x 3 ⁵	(3 x 3) x (3 x 3 x 3 x 3 x 3)	37
4 ³ x 4 ²	(4 x 4 x 4) x (4 x 4)	4 5

Product of Powers	Repeated Multiplication	Power Form

State a rule for multiplying any two powers with the same base.

Add the exponents

Can you use your rule to multiply $2^3 \times 3^2$? Explain why or why not.

No because they don't have the same base.

Quotient of Powers	Repeated Multiplication	Power Form
$10^5 \div 10^3$	$\frac{10 \times 10 \times 10 \times 10}{10 \times 10 \times 10}$	102
$10^8 \div 10^5$	$\frac{10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10}{10 \times 10 \times 10 \times 10 \times 10}$	10^{3}
$5^{10} \div 5^{4}$	<u>5×5×5×5×5×5×5×5×5</u> 5×5×5×5	56
98 ÷ 93	$\frac{9\times9\times9\times9\times9\times9\times9}{9\times9\times9}$	95
75 ÷ 74	7×7×7×7 7×7×7×7	71
$4^7 \div 4^4$	4×4×4×4×4×4 4×4×4×4	43

Create 5 more examples of your own. Roll 3 dice, the single color will be the base and the other 2 dice of the same color will be your exponents. Make sure you put the larger exponent first!

 $2^5 \div 2^4$

Quotient of Powers	Repeated Multiplication	Power Form

State a rule for dividing two powers with the same base.

Subtract the exponents

Can you use your rule to divide $5^2 \,\div\, 2^3$? Explain why or why not.

No because the bases are NOT the same

Summary Notes

Exponent Law for a Product of Powers

 $a^m \times a^n = a^{m+n}$ where $a \neq 0$ and m and n are whole numbers

To multiply powers with the same base, (excluding a base of zero), keep the base and add the exponents.

- 1: Write as a single power, then evaluate.
- A) $4^3 \times 4^4$

$$= 4^{3+4} = 4^7 = (4)(4)(4)(4)(4)(4)(4) = 16384$$

B) $7^5 \times 7^{-5}$

$$= 7^{5 + -5} = 7^{0} = 1$$

C) $(-3)^2 \times (-3)^4$

$$= (-3)^{2+4} = (-3)^6 = (-3)(-3)(-3)(-3)(-3)(-3) = 729$$

2: Write as a single power.

A)
$$9^5 \times 9 = 9^{5+1} = 9^6$$

B)
$$8^{-11} \times 8^{13} = 8^{-11+13} = 8^2$$

C)
$$3.8^4 \times 3.8^2 = 3.8^{4+2} = 3.8^6$$

D)
$$\left(\frac{1}{4}\right)^{12} \times \left(\frac{1}{4}\right)^8 = \left(\frac{1}{4}\right)^{12+8} = \left(\frac{1}{4}\right)^{20}$$

E)
$$5^2 \times 5 \times 5^3 = 5^{2+1+3} = 5^6$$

Exponent Law for a Quotient of Powers

$$\alpha^m \div \alpha^n$$
 = α^{m-n}
 where $\alpha {\neq} 0$, m and n are whole numbers and $m \geq n$

To divide powers with the same base, (excluding a base of zero), keep the base and subtract the exponents.

3: Write as a single power, then evaluate.

A)
$$2^5 \div 2^2 = 2^{5-2} = 2^3 = (2)(2)(2) = 8$$

B)
$$\frac{(-6)^8}{(-6)^6} = (-6)^{8-6} = (-6)^2 = (-6)(-6) = 36$$

$$C) \qquad \frac{3^4}{3^4} = 3^{4-4} = 3^0 = 1$$

4: Write as a single power.

A)
$$12^6 \div 12 = 12^{6-1} = 12^5$$

B)
$$(1.4)^6 \div (1.4)^2 = (1.4)^{6-2} = (1.4)^4$$

$$C) \quad \frac{5^7}{5^3} = 5^{7-3} = 5^2$$

$$D) \quad \frac{8^3}{8^{-2}} = 8^{3-(-2)} = 8^{3+2} = 8^5$$

Note: "Evaluate" means to find the answer in "standard form"

Example: Evaluate $4^3 = 4 \times 4 \times 4 = 64$

Evaluate
$$2^3 \times 2^2$$

= 2^{3+2}
= 2^5
= $(2)(2)(2)(2)(2)$
= 32

"Express as a single power" means leave your answer in "exponent form" $\frac{5^8}{5^2} = 5^{8-2} = 5^6$

Express as a single power

A)
$$5^2 \times 5^4 \times 5$$

= 5^{2+4+1}
= 5^7

B)
$$6^6 \times 6^{-2}$$

= $6^{6 + (-2)}$
= 6^4

C)
$$(-6)^7 \div (-6)^6$$

= $(-6)^{7-6}$
= $(-6)^1$

D)
$$10^8 \div 10^2$$

= 10^{8-2}
= 10^6

Often you will have problems where you will have to apply more than one exponent law!

E)
$$8^{12} \div 8^7 \times 8^2$$

= $8^{12-7} \times 8^2$
= $8^5 \times 8^2$
= 8^7

$$\mathsf{F)} \quad \frac{2^3 \times 2^5}{2^2} = \frac{2^{3+5}}{2^2} = \frac{2^8}{2^2} = 2^{8-2} = 2^6$$

G)
$$\frac{(-4)^{10}}{(-4)^3 \times (-4)^3} = \frac{(-4)^{10}}{(-4)^{3+3}} = \frac{(-4)^{10}}{(-4)^6} = (-4)^{10-6} = (-4)^4$$

H)
$$6^2 + 6^3 \times 6^2$$

= $6^2 + 6^{3+2}$
= $6^2 + 6^5$ (since there is not an adding law we cannot write this expression as a single power - you could however, evaluate if you were asked to)

I)
$$(-10)^4[(-10)^6 \div (-10)^4] - 10^7$$

= $(-10)^4[(-10)^{6-4}] - 10^7$
= $(-10)^4[(-10)^2] - 10^7$
= $(-10)^{4+2} - 10^7$
= $(-10)^6 - 10^7$

