Mathematics 3201

Unit 5: Polynomial Functions and 4.5 Solving Rational Equations

Review

Name:

Section 1: Multiple Choice.

1. What is the leading coefficient of the polynomial: $y = -2x^2 + 5x - 3$?

1. B

- A) -3

D) x

2. What is the end behaviour of the graph of: $y = -3x^3 + 4x + 5$?

- A) Q2 to Q1
- B) Q3 to Q1
- C) Q2 to Q4
- D) Q3 to Q4
- 3. What is the maximum number of turning points a cubic polynomial have?

A) 0

- B) 1

D) 3

4. What is the domain of y = 3x - 1?

- A) $\{x | x \ge -1, x \in R\}$ B) $\{x | x \in R\}$
- C) $\{y \mid y \ge -1, y \in R\}$
 - D) $\{y | y \in R\}$

5. What is the range of the function graphed below?

- $A) \quad \{x \mid x \ge 3, x \in R\}$
- B) $\{x \mid x \le 3, x \in R\}$
- C) $\{y | y \ge 2, y \in R\}$
- (D) $\{y | y \le 2, y \in R\}$

6. What is the equation of the following graph?

- A) $y = x^3 + 2x 1$
- (B) $y = -x^3 + 2x 1$
- C) $y = x^3 + 2x + 1$
- D) $y = x^3 + 2x + 1$

What is the *y*-intercept of $y = 2x^2 + 3x - 5$?

- A) -5
- B) 2

C) 3

D) none

8. What is the constant term for the following graph?

- A) -1
- B) 0
- C) 1

9. From which quadrants does the graph of $y = -4x^2 - 7$ extend?

9. B

- A) Q2 to Q1
- B) Q3 to Q4
- C) Q3 to Q1
- D) Q2 to Q4

A) 0

B) 1

- C) 2
- D) 3

11. What is the maximum number of x-intercepts for y = 3x - 5?

A) 0

B) 1

C) 2

D) 3

12. Which function passes through the point (2,-10)?

12. <u>F</u>

- A) $f(x) = -x^3 + x 4$ B) $f(x) = -x^3 + x 10$

- C) $f(x) = x^3 + x 4$ D) $f(x) = x^3 + x 10$

13. Given the scatter plot and the curve of best fit of the polynomial f(x), what is the value of f(30)?

13.

- A) 13
- B) 32
- C) 47
- D) 58

Section 2: Constructed Response.

Determine the following characteristics of each function: 1.

Characteristics	$f(x) = 3x^3 - 4x^2 + 2x - 1$	$f(x) = -2(x-3)^2 + 3$			
Number of possible <i>x</i> -intercepts	1,2 or 3	0,1 or 2			
y-intercept	_	y: -2(0-3)*+3 y: -2(9)+3: -18+3: -15			
main	$\chi \in R$	$\chi \in \mathbb{R}$			
Range	y ∈ R	4 4 3			
Number of possible turning points	0 or 2	1			
End behaviour	Q3 to Q1	Q3 to Q4			

- 2. Sketch a possible graph of polynomial functions that satisfy each set of characteristics:
 - A) Quadratic, one x-intercept, negative Leading coefficient
- B) Two turning points (one in Q2 and Q4), positive leading coefficient and constant term of -4

C) Degree 2, one turning point which is a maximum, constant term of 3

3. Determine the following characteristics for the following polynomials:

Characteristics	y 10 10 10 10 10 10 10 10 10 10 10 10 10	Change growth			
		10			
Degree	3	2			
Sign of Leading Coefficient	+	+			
Constant term of function	3	37			
End behaviour	Q3 to Q1	Q2 to Q1			
y-intercept	y: 3	y = 37			
Domain	$\alpha \in \mathbb{R}$	ZER			
Range	$ \chi \in \mathbb{R} $ $ y \in \mathbb{R} $	2 € IR 4 ≥ - 5			

4. Write an equation for a polynomial function that satisfies each set of characteristics:

Degree 1, decreasing function, *y*-intercept of -2

y = -3x - 2

$$y = -2x^2 + 3$$

C) Cubic extending from Q2 to Q4, y-intercept of 0

$$\int y = -2x^3 + x^2 + x$$

D) Extending from Q2 to Q1, y-intercept of 5, no x-intercept or turning point

Sketch two possible graphs that are different, yet both are cubic functions with positive leading coefficients and negative y-intercepts. Explain why the graphs you sketched are different.

The table below shows the birthrate in Canada per 1000 people. 6.

Number of years after 1975	0	5	10	15	16	17	18	19
Birthrate (per 1000 people)	15.3	15.5	14.9	14.3	14.1	13.6	13.3	12.9

When a linear regression is performed on this data, the equation y = -0.13x + 15.81 is obtained.

What is does the -0.13 represent in this equation?

b) Assuming this trend continues, what will the birthrate in Canada be in 2020? 2020 - 1975= 45 years

$$y = -0.13(45) + 15.81$$

 $y = -5.85 + 15.81 = 9.96$

c) In what year will the birthrate be 11.2?

Two hoses together can fill a pool in 2 hours. If only hose A is used, the pool fills in 3 hours. How long would it take to fill the pool if only hose B is used?

hose A 3 1/3
hose B X 1/2

Together 2 1/2

$$\frac{1}{3} + \frac{1}{4} = \frac{1}{2} \times 6\pi \quad \text{or} \quad \frac{1}{7} = \frac{1}{2} - \frac{1}{3}$$

$$2x + 6 = 3x$$

$$2x - 3x = -6$$

$$-x = -6$$

$$7 = 6$$

+ p. 259 #12 }