Name: \_\_\_\_\_

### Math 3201 Unit 7 – Logarithmic Functions Assignment 1 – Unit Assignment



### Part 1 – Selected Response:

# <u>Instructions</u>: Choose the best answer and shade it in the corresponding space on the answer sheet provided.

- 1. What is the x-intercept of  $f(x) = -3 \ln x$ ?
  - (A) –1
  - (B) 0
  - (C) 1
  - (D) –3
- 2. What is the end behaviour of  $f(x) = 5 \log x$ ?
  - (A) I to II
  - (B) I to IV
  - (C) II to I
  - (D) IV to I



- (A)  $f(x) = -\frac{1}{3} \ln x$ (B)  $f(x) = 3 \log x$ (C)  $f(x) = -\frac{1}{3}(3)^{x}$ (D)  $f(x) = 0.3(10)^{x}$



Which of the following describes the function  $f(x) = 2 \log x$ ? 4.

- (A) Decreasing with a x-intercept of 1
- (B) Decreasing with a x-intercept of 2
- Increasing with a x-intercept of 1 (C)
- Increasing with a x intercept of 2 (D)
- What is the exponential form of  $y = \log_4 15$ ? \_\_\_\_5.
  - $20^{y} = 4$ (A)
  - $4^{y} = 20$ **(B)**
  - $y^{20} = 4$ (C)
  - $y^4 = 20$ (D)

What is an estimate the value of y in the exponential equation  $50 = e^{y}$ ? 6.

- (A) 0.3
- 1.7 (B)
- (C) 2.9
- 3.9 (D)
- 7. Determine the concentration of hydrogen ions in bleach, with a pH of 12.8. Recall that pH, p(x), is defined by the equation  $p(x) = -\log x$  where the concentration of hydrogen ions, x, in a solution is measured in moles per liter.
  - $1.3 \times 10^{-13} mol/L$ (A)
  - $1.6 \times 10^{-13} mol/L$ **(B)**
  - $1.3 \times 10^{-12} mol/L$ (C)
  - $1.6 \times 10^{-12} mol/L$ (D)
  - What is  $\log_3 100 2\log_3 5$  written as a single logarithm? 8.
    - $\log_3 4$ (A)
    - (B)  $\log_3 10$
    - log<sub>3</sub> 1000 (C)
    - $\log_{3} 2500$ (D)

9. Evaluate:  $\log_2(\frac{1}{128})$ 

- (A) -64
- (B) -7
- (C) 7
- (D) 64

10. What is the logarithmic form of  $C = 2^m$ ?

- (A)  $m = \log_2 C$
- (B)  $m = \log_m 2$
- (C)  $C = \log_2 m$
- (D)  $C = \log_m 2$

\_\_\_\_\_ 11. Evaluate:  $3\log_2 8 - 3\log_2 4$ 

- (A) 2
- (B) 3
- (C) 4
- (D) 18

\_\_\_\_\_12.

Which value is the best estimate for  $y = \log_4 500$  ?

- (A) 0.2 (B) 0.6
- (B) 0.6 (C) 2.7
- (C) 2.7(D) 4.5

\_\_\_\_\_13. Solve:  $4^{x+1} = 7$ 

(A) 
$$\frac{\log 4}{\log 7} - 1$$

(B) 
$$\frac{\log 7}{\log 4} - 1$$

(C)  $\frac{\log 4 - 1}{\log 7}$ 

(D) 
$$\frac{\log 7 - 1}{\log 4}$$

- 14. The number of ants in a colony is modelled by the equation  $N(d) = 120(1.14)^w$ where N(d) represents the number of bees and w represents the number of weeks from now. After how many days will there be 200 ants?
  - (A) 4
  - (B) 5
  - (C) 6
  - (D) 7

\_\_\_\_\_ 15. Which expression is equivalent to  $\log\left(\frac{\sqrt{AB}}{C^3}\right)$ ?

(A)  $\frac{1}{2}\log A - \log B + 3\log C$ (B)  $\frac{1}{2}\log A + \log B - 3\log C$ (C)  $2\log A - \log B + \frac{1}{2}\log C$ (D)  $2\log A + \log B - \frac{1}{3}\log C$ 

#### Part 2 – Constructed Response:

## <u>Instructions</u>: Complete all of the following in the space provided. For full marks be sure to show all workings and present your answers in a clear and concise manner.

1. Simplify then evaluate:

(A) 
$$4\log_4 2 - \log_4 8$$
 (1) (B)  $\frac{1}{2}\log 64 + 3\log 5$  (1)

2. Algebraically solve:  $6^{x-2} = 5^{x+3}$ 

3. After taking a cough suppressant, the amount, A, in mg, remaining in the body is given by:

$$A = 400 \left(\frac{1}{2}\right)^t$$
, where t is given in hours.

- (A) What is the initial amount taken? (1)
- (B) What percent of the drug leaves the body each hour? (1)
- (C) Algebraically determine how much of the drug is left in the body 6 hours after (1) the dose is given?

(D) How long is it until only 1 mg of the drug remains in the body? (2)

- 4. The pH scale is used to measure the acidity of a solution. The pH, p(x), is defined by the equation  $p(x) = -\log x$ , where the concentration of hydrogen ions, x, in a solution is measured in moles per litre (mol/L).
  - (A) Black coffee has a pH of 5. What is its hydrogen ion concentration? (1)

(B) Water has a pH of 7. In terms of concentration, how much more acidic (2) is black coffee than water?

5. Identify any error(s) in the solution below and provide the correct solution. (3)

 $\frac{1}{2}log_{2} 36 + \left(2log_{2} 6 - \frac{1}{2}log_{2} 81\right)$   $= \log_{2} 36^{\frac{1}{2}} + \left(\log_{2} 6^{2} - \log_{2} 81^{\frac{1}{2}}\right)$   $= \log_{2} 18 + \left(\log_{2} 12 - \log_{2} 9\right)$   $= \log_{2} 18 + \left(\log_{2} 3\right)$   $= \log_{2} 21$