ANSWER KEY

Grade 8 Mathematics
 LSB

June 2010

Section A:

1.	B
2.	B
3.	A
4.	C
5.	C

6.	D
7.	B
8.	D
9.	A
10.	B

Section A: Constructed Response [10 Marks]

Write your answers in the space provided, and show all workings to achieve full marks.

1. Sketch a model (ie, Number line, Bank Model, etc) to calculate:

$$
(+10) \div(-5)
$$

Methods Will Vary: Sample solution using number line:
How many steps of -5 make +10 ? Since the step size is negative, you must walk backward 2 steps. Since you are facing the negative end of the line, the answer is -2 .

The answer alone should not receive full marks.
2. Sketch a model (i.e., Area Model, Number line, etc.) to calculate:

$$
\frac{3}{4} \times \frac{1}{5}
$$

Methods will Vary

Sample solution using Area model:
Area shaded twice $\frac{3}{20}$

3. The volume of the following right pentagonal prism is $100 \mathrm{~cm}^{3}$. If the area of the base is $25 \mathrm{~cm}^{2}$, what is the height of the object?

4. A sample of coins from a piggy bank is shown:

A. The picture represents the ratio of all the coins in the bank. If there are 60 coins in the bank, how many are nickels?
[2 Mark]

$$
\frac{1}{10}=\frac{\square}{60}
$$

There are 6 Nickels in the bank.
B. What is the ratio of toonies to quarters?
[1 Mark]

ANSWER KEY
 Grade 8 Mathematics LSB
 June 2010

Section B: Calculator

11.	D
12.	B
13.	D
14.	D
15.	B
16.	C
17.	D
18.	B
19.	A
20.	C

21.	A
22.	C
23.	C
24.	A
25.	B
26.	A
27.	C
28	C
29.	C
30.	C

31.	C
32.	C
33.	A
34.	C
35.	A
36.	A
37.	C
38.	D
39.	B
40.	A

Section B: Constructed Response [30 Marks]

Write your answers in the spaces provided, and show all workings to achieve full marks.
5. A ladder is leaning against a wall. How high up the wall does the ladder reach? Express your answer to one decimal place.

$$
\begin{aligned}
& \text { Leg }^{2}=\text { Hypotenuse }^{2}-\text { Leg }^{2} \\
& \text { Leg }^{2}=8^{2}-3^{2} \\
& \text { Leg }^{2}=64-9 \\
& \text { Leg }^{2}=55 \\
& L e g=\sqrt{55} \\
& \operatorname{Leg}=7.4 m
\end{aligned}
$$

6. The area of the square shown is $625 \mathrm{~cm}^{2}$. What is the length of the diagonal? Express your answer to one decimal place.

$$
\begin{aligned}
& s=\sqrt{625} \\
& s=25 \mathrm{~cm} \\
& \text { Hypotenuse }^{2}=\text { Leg }^{2}+\text { Leg }^{2} \\
& \text { Hypotenuse }^{2}=25^{2}+25^{2} \\
& \text { Hypotenuse }^{2}=625+625 \\
& \text { Hypotenuse }^{2}=1250 \\
& \text { Hypotenuse }=\sqrt{1250} \\
& \text { Hypotenuse }=35.4 \mathrm{~cm}
\end{aligned}
$$

7. Evaluate. Show all workings

$$
\begin{aligned}
& \left(\frac{5}{6}-\frac{2}{3}\right) \div\left(\frac{1}{2}+\frac{3}{4}\right) \\
& =\left(\frac{5}{6}-\frac{4}{6}\right) \div\left(\frac{2}{4}+\frac{3}{4}\right) \\
& =\left(\frac{1}{6}\right) \div\left(\frac{5}{4}\right) \\
& =\left(\frac{1}{6}\right) \times\left(\frac{4}{5}\right) \\
& =\left(\frac{4}{30}\right) \text { or }\left(\frac{2}{15}\right)
\end{aligned}
$$

Note: Do not penalize students if answer isn't reduced to lowest terms.
8. Chris is painting a barrel that is 1.5 m high and 0.2 m in radius. Including the top and bottom, what area will the paint have to cover? Show your work. [3 Marks]

$$
\begin{aligned}
& \text { SA of Barrel }=2 \pi r^{2}+2 \pi r h \\
& \text { SA of Barrel }=2 \times 3.14 \times 0.2^{2}+ \\
& 2 \times 3.14 \times 0.2 \times 1.5 \\
& \text { SA of Barrel }=0.2512+1.884 \\
& \text { SA of Barrel }=2.1352 \mathrm{~m}^{2}
\end{aligned}
$$

9. Sean needs to buy nails for his carpentry project. The hardware store sells these full boxes of nails for the same price. Which one should he buy? Justify your answer.
[3 Marks]

Volume Box A $=8 \times 6 \times 4$	Volume Box B $=11 \times 8 \times 2$
$=192 \mathrm{~cm}^{3}$	$=176 \mathrm{~cm}^{3}$
Box A because it is bigger, therefore contains more nails.	

10. A Ford F-150 burns fuel at a rate of 0.113 litres per kilometre driven.
A. If a person travelled a total distance of 200 km , how many litres of fuel were burned?
[1 Marks]

$$
0.113 \mathrm{l} / \mathrm{km} \times 200 \mathrm{~km}=22.6 \text { litres }
$$

B. If the price of fuel was $\$ 1.10$ per litre how much did the trip cost in dollars?
[1 Marks]
22.6 litres $x \$ 1.10=\$ 24.86$

Note: A student gets the wrong answer in part A but still correctly use the answer in Part B still deserves full credit for part B.
11. A video store offers the following choices:

CHOICE A: $\quad 25 \%$ off each DVD with a regular price of $\$ 20.00$
CHOICE B: Buy 3 DVD's for a total of $\$ 40.00$
Which deal gives the better price for one DVD? Justify your answer. [2 Marks]

Choice A	
$\$ 20.00 \times 0.25=\$ 5.00$	
$\$ 20.00-\$ 5.00=\$ 15.00$	Choice B
	$\$ 40.00 \div 3=\$ 13.33$
	Better Deal!!!!

12. Solve the equation. Show your workings.

$$
3(x-2)=12
$$

[2 Marks]
Methods Will Vary

Algebraically:	$3 x-6=12$
	$3 x-6+6=12+6$
	$3 x=18$
	$\frac{3 x}{3}=\frac{18}{3}$
	$x=6$

13. Bell Express Vu charges a basic monthly rate of $\$ 20.00$ and $\$ 5.00$ for each pay-perview movie. This can be described by the equation $C=5 m+20$.
A. Determine the cost of viewing pay-per-view movies by completing the table.

Movies (m)	Cost (c)
0	20
1	25
2	30
3	35

B. Create a graph using the data in the table of values.

14. The graph shown gives the temperature at Puerto Vallarta in Mexico.

A. What is misleading about the graph?
[1 Mark]
It appears to show that the temperature dropped greatly over the 3 hour period.
B. How can the graph be changed to represent the data accurately?

Start the temperature scale at $0^{\circ} \mathrm{C}$.
[1 Mark]
15. Sketch and label the front, top, left side and right side views of the object.

16. Do both of these figures tessellate? Explain your answer.

No, only one of them tessellates. In order for a shape to tessellate, the angles around any vertex must add up to 360°. Since the interior angles of a regular pentagon are 108° it is impossible to add up to 360°. However, the interior angles of a regular hexagon are 120° and 3 of these added together will form 360°. Hence, a regular pentagon will not tessellate and a regular hexagon will.

