Part 1: Circle the letter of the correct answer.

- What is the end behavior of $y = \frac{1}{3} \ln x$? 1.
 - (A) I to II
- (B) I to IV
- (C) II to I
- (D) IV to I

- What is the end behavior of $y = -\frac{1}{2} \log x$? 2.
 - (A) I to II
- (B) I to IV
- (C) II to I
- (D) IV to I

- 3. What is the x-intercept of $y = -2\log x$
 - (A) (1,0)
- (B) (-2,0)
 - (C) (0,1)
- (D) (0,2)

- What is the domain of $y = -\frac{1}{4} \log x$? 4.
- (A) $\{x \mid x > 0, x \in R\}$ (B) $\{x \mid x \ge 0, x \in R\}$ (C) $\{x \mid x < 0, x \in R\}$ (D) $\{x \mid x \le 0, x \in R\}$
- 5. What is $\log A + 3\log B - 5\log C$ written as a single logarithm?
 - (A)

(B) $\log(A^4 + B - C^2)$

 $\log\left(\frac{\mathbf{A}\cdot\mathbf{C}}{\mathbf{C}^2}\right)$ (C)

- (D) $\log \frac{\mathbf{A} \cdot \mathbf{B}^3}{\mathbf{C}^5}$
- Which is equivalent to $\log_4\left(\frac{AB^3}{C}\right)$? 6.
 - (A) $\log_4(A+B^3-C)$

- (B) $\log_4 A + 3\log_4 B - \log_4 C$
- $3(\log_4 A + \log_4 B) \log_4 C$ (C)
- $3(\log_4 A + \log_4 B \log_4 C)$ (D)
- 7. Which graph best represents the function $y = -\log x$

(B)

(C)

(D)

8. What is the logarithmic form of $5^x = 6$	8.	What is th	e logarithmic	form of	$5^{x} = 6$
--	----	------------	---------------	---------	-------------

(A) $\log_5 x = 6$ (B) $\log_5 6 = x$

(C) $\log_6 x = 5$ (D) $\log_{x} 5 = 6$

What is the exponential form of $\log_3 5 = x$? 9.

(A) $3^5 = x$ (B) $x^3 = 5$

(C) $5^{x} = 3$ (D) $3^{x} = 5$

Evaluate: $\log_4 10$. 10.

(A) 0.60 (B) 1.66 (C) 1.78 (D) 2.50

Given $5^x = 12$, which best approximates x? 11.

(A) 0.65 (B) 1.23 (C) 1.46 (D) 1.54

12. Which graph best represents the function $y = 7 \ln x$?

(A)

(B)

(C)

(D)

Evaluate $3\log_8 24 - 3\log_8 3$ 13.

(A) 3 (B) 7 (C) 1

(D) 64

Calculate the pH of a solution with the hydrogen ion concentration of 0.0000065 mol/l. Recall 14. that pH, p(x) is defined by the equation $p(x) = -\log x$, where the concentration of hydrogen ions, in a solution is measured in moles per litre.

(A) 6.5 (B) -5.2

-6.5 (C)

5.2 (D)

15. What is the range of $y = -2 \log x$

(A) $\{y | y > 0, y \in R\}$ (B) $\{y | y \in R\}$ (C) $\{y | y < 0, y \in R\}$ (D) $\{y | y > -2, y \in R\}$

- 16. Evaluate the following using the Laws of Logarithms:
- (7) A) $2 \log_{12} 6 + \log_{12} 4$

B) $\frac{1}{2}\log_2 36 + \log_2 5 - \log_2 15$

- 17. Algebraically, solve for x:
 - A) $\log_4 x = -3$

B) $7^{x-2} = 310$

(6)

- 18. The half-life of a certain drug in the bloodstream is 4 days. If a patient is given 500mg, algebraically determine how long it will take for the amount of drug in the patient's body
- (4) to reduce to 15 mg. $A = A_o \left(\frac{1}{2}\right)^{\frac{t}{h}}$

19.	\$2500 is invested at 7.5% per year	, compounded monthly.	How many y	years will it take for
	the initial investment to reach \$500	0. Use the following for	mula:	$A = P(1 + i)^n$

(4)

20. In terms of hydrogen ion concentration, how much more acidic is lemon juice, with a pH of 2, than baking soda, with a pH of 9? $p(x) = -\log x$

(4)