Selected Response: Write the UPPERCASE letter of the correct answer in the correct blank on page 5. (18 marks)

- 1. What is the end behavior of $y = \log x$?
 - (A) I to II
 - (B) I to IV
 - (C) II to I
 - (D) IV to I
- 2. What is the end behavior of $y = \ln x$?
 - (A) I to II
 - (B) I to IV
 - (C) II to I
 - (D) IV to I
- 3. What is the end behavior of $y = -6 \ln x$?
 - (A) I to II
 - (B) I to IV
 - (C) II to I
 - (D) IV to I
- 4. What is true of the graph of $y = -\ln x$?
 - (A) x-intercept is (-1,0); no y-intercept
 - (B) *x*-intercept is (1,0); no *y*-intercept
 - (C) no *x*-intercept is; *y*-intercept(0, -1)
 - (D) no *x*-intercept is; *y*-intercept (0,1)
- 5. What is the domain of $y = 7 \ln x$?
 - (A) $\{x | x > 0; x \in R\}$
 - (B) $\{x | x > 7; x \in R\}$
 - (C) $\{x | x < 0; x \in R\}$
 - (D) $\{x | x < 7; x \in R\}$

6. What is the range of $4 \log x$?

- (A) $\{y|y > 0; y \in R\}$ (B) $\{y|y > 4; y \in R\}$ (C) $\{y|y \in R\}$ (D) $\{y|y < 4; y \in R\}$
- 7. Which function will have the fastest decrease in *x*-values
 - (A) $y = -3 \log x$ (B) $y = 2 \log x$ (C) $y = \frac{-1}{3} \log x$ (D) $y = \frac{1}{2} \log x$
- 8. Which graph best represents the function $y = \ln x$?

9. Which graph best represents the function $y = 7\log x$?

What is the logarithmic form of $\left(\sqrt{2}\right)^6 = 8$? 10.

- $\log_{\sqrt{2}} 6 = 8$ (A)
- $\log_8 6 = \sqrt{2}$ $\log_{\sqrt{2}} 8 = 6$ (B)
- (C)
- $\log_6 8 = \sqrt{2}$ (D)

Given $7^x = 14$, which best approximates x? 11.

- (A) 1.15
- (B) 1.36
- (C) 2
- 7 (D)

12. Given $7^x + 5 = 25$, what is the approximate value of x?

(A)	0.83
(B)	1.30
(C)	1.54
(D)	1.75

13. Which logarithmic equation correctly represents the exponential equation $10^7 = x$?

- (A) $x = \log 7$ (B) $x = \log 10$ (C) $7 = \log x$ (D) $10 = \log x$
- 14. Evaluate the logarithmic expression $\log_{16} 4$.
 - (A) 0
 (B) 0.5
 (C) 1
 (D) 2

15. Determine the concentration of hydrogen ions in bleach, with a pH of 12.8. Recall that pH, p(x), is defined by the equation $p(x) = -\log x$, where the concentration of hydrogen ions, *x*, in a solution is measured in moles per litre.

- (A) $1.3 \times 10^{-13} \text{ mol/L}$ (B) $1.6 \times 10^{-13} \text{ mol/L}$ (C) $1.3 \times 10^{-12} \text{ mol/L}$ (D) $1.6 \times 10^{-12} \text{ mol/L}$
- 16. Which expression is equivalent to $\ln 52 \ln 13$?
 - (A) ln 39
 (B) ln 39e
 (C) ln 4
 (D) ln 4e

17. Which logarithmic expression is **not** equivalent to the others?

(A) $\frac{\log 5}{\log 3}$ (B) $\log_9 25$ (C) $\frac{\log 25}{2\log 3}$ (D) $\log_{27} 100$

- 18. The equation of the logarithmic function that models a data set is $y = 8.2 + 0.7 \ln x$. Extrapolate the value of y when x = 22.
 - (A) y = 10.4
 (B) y = 10.8
 (C) y = 11.1
 (D) y = 11.3

Selected Response Answer Sheet (UPPERCASE letters please!!!)

1D	7. <u> </u>	13. <u> </u>
2D	8. <u>B</u>	14. <u>B</u>
3. <u>B</u>	9. <u>B</u>	15. <u>B</u>
4. <u>B</u>	10C	16. <u> </u>
5. <u> </u>	11. <u>B</u>	17. <u>D</u>
6. <u> </u>	12. <u> </u>	18. <u> </u>

Constructed Response: Answer all the questions that follow showing all work.

1. Technetium-99, a radioactive isotope used in nuclear medicine, has a half-life of 6 hours. Set up an equation, and algebraically determine how long it would take for 500 micrograms of Technetium-99 to reduce to 100 micrograms. (6 marks)

$$y = a \times b^{\frac{t}{h}}$$

half-life so $b = \frac{1}{2}$; half-life is 6hrs so $h = 6$
initial amount is 500 μ g so $a = 500$
final amount is 100 μ g so $y = 100$

$$b = \frac{100}{500} = \frac{500\left(\frac{1}{2}\right)^{\frac{t}{6}}}{500}$$

$$0.2 = 0.5^{\frac{t}{6}}$$

$$b = 0.2 = \log 0.5$$

$$6(\log 0.2) = 6\left(\frac{t}{6}\log 0.5\right)$$

$$6\log 0.2 = t\log 0.5$$

$$\frac{6\log 0.2}{\log 0.5} = \frac{t\log 0.5}{\log 0.5}$$

$$t \approx \boxed{13.93 \text{ yrs}}$$

2. A laboratory assistant decided to observe the reproductive properties of a new strain of bacteria. The assistant started observing a population of 300 bacteria and noted that the bacteria population doubled every 5 minutes. Write a function to model this situation and use it to algebraically determine the time it will take for the population to reach 18 000 bacteria.(6 marks)

$$y = a \times b^{\frac{t}{c}}$$

population doubles (b = 2) every 5 minutes (c = 5)
initial amount is 300 bacteria so a = 300
final amount is 18000 so y = 18000

$$\log 60 = \log(2)^{\frac{t}{5}}$$

$$\frac{18000}{300} = \frac{300(2)^{\frac{t}{5}}}{300}$$

$$60 = (2)^{\frac{t}{5}}$$

$$\log 60 = \log(2)^{\frac{t}{5}}$$

$$\log 60 = \frac{t}{5}\log 2$$

$$5(\log 60) = 5\left(\frac{t}{5}\log 2\right)$$

$$5\log 60 = t\log 2$$

$$\frac{5\log 60}{\log 2} = \frac{t\log 2}{\log 2}$$

$$t \approx \boxed{29.53\min}$$

3.\$2500 is invested at 2.6% per year, compounded quarterly. Algebraically determine how long it will take for the investment to reach \$3000. Use the compound interest formula: $A = P(1+i)^n$

(6 marks)

 $i = \frac{0.026}{4} = 0.0065$ $3000 = 2500 (1.0065)^{n}$ $\frac{3000}{2500} = \frac{2500 (1.0065)^{n}}{2500}$ $1.2 = 1.0065^{n}$ $\log 1.2 = \log 1.0065^{n}$ $\log 1.2 = n \log 1.0065$ $\frac{\log 1.2}{\log 1.0065} = \frac{n \log 1.0065}{\log 1.0065}$ $n = \frac{\log 1.2}{\log 1.0065} \approx 28.14053262 \text{ quarters} \approx 7.04 \text{ yrs}$ 4. A laboratory that uses radioactive substances received a shipment of 500 g of thorium-227. Only 318.16 g of the thorium-227 remained 12.0 days later. Determine the half-life of thorium-227 algebraically using logarithms, to the nearest tenth of a day. The half-life equation is

$$A = A_0 \left(\frac{1}{2}\right)^{\overline{k}}$$
(6 marks)

$$318.16 = 500 \left(\frac{1}{2}\right)^{\frac{12}{h}}$$
$$\frac{318.16}{500} = \frac{500 \left(\frac{1}{2}\right)^{\frac{12}{h}}}{500}$$
$$0.63632 = 0.5^{\frac{12}{h}}$$
$$\log 0.63632 = \log 0.5^{\frac{12}{h}}$$
$$\log 0.63632 = \frac{12}{h} \log 0.5$$
$$h (\log 0.63632) = h \left(\frac{12}{h} \log 0.5\right)$$
$$h \log 0.63632 = 12 \log 0.5$$
$$\frac{h \log 0.63632}{\log 0.63632} = \frac{12 \log 0.5}{\log 0.63632}$$
$$h \approx \boxed{18.4 \text{days}}$$

t

$$\log 2^{3x+2} = \log 7^{x-3}$$

$$(3x+2)\log 2 = (x-3)\log 7$$

$$3x\log 2 + 2\log 2 = x\log 7 - 3\log 7$$

$$3x\log 2 + 2\log 2 - 2\log 2 = x\log 7 - 3\log 7 - 2\log 2$$

$$3x\log 2 = x\log 7 - 3\log 7 - 2\log 2$$

$$3x\log 2 - x\log 7 = x\log 7 - x\log 7 - 3\log 7 - 2\log 2$$

$$3x\log 2 - x\log 7 = -3\log 7 - 2\log 2$$

$$x(3\log 2 - \log 7) = -3\log 7 - 2\log 2$$

$$\frac{x(3\log 2 - \log 7)}{3\log 2 - \log 7} = \frac{-3\log 7 - 2\log 2}{3\log 2 - \log 7}$$

$$x \approx -54.1$$

6. Algebraically solve for x:
$$e^{x+1} = 9$$
 (3 marks)

$$\log e^{x+1} = \log 9$$

$$(x+1)\log e = \log 9$$

$$\frac{(x+1)\log e}{\log e} = \frac{\log 9}{\log e}$$

$$x+1 = \frac{\log 9}{\log e}$$

$$x+1-1 = \frac{\log 9}{\log e} - 1$$

$$x = \frac{\log 9}{\log e} - 1$$

$$x \approx 1.197224577$$