\qquad
Selected Response: Write the UPPERCASE letter of the correct answer in the correct blank on page 5. (18 marks)

1. What is the end behavior of $y=\log x$?
(A) I to II
(B) I to IV
(C) II to I
(D) IV to I
2. What is the end behavior of $y=\ln x$?
(A) I to II
(B) I to IV
(C) II to I
(D) IV to I
3. What is the end behavior of $y=-6 \ln x$?
(A) I to II
(B) I to IV
(C) II to I
(D) IV to I
4. What is true of the graph of $y=-\ln x$?
(A) x-intercept is $(-1,0)$; no y-intercept
(B) x-intercept is $(1,0)$; no y-intercept
(C) no x-intercept is; y-intercept $(0,-1)$
(D) no x-intercept is; y-intercept $(0,1)$
5. What is the domain of $y=7 \ln x$?
(A) $\{x \mid x>0 ; x \in R\}$
(B) $\{x \mid x>7 ; x \in R\}$
(C) $\{x \mid x<0 ; x \in R\}$
(D) $\{x \mid x<7 ; x \in R\}$
6. What is the range of $4 \log x$?
(A) $\{y \mid y>0 ; y \in R\}$
(B) $\{y \mid y>4 ; y \in R\}$
(C) $\{y \mid y \in R\}$
(D) $\{y \mid y<4 ; y \in R\}$
7. Which function will have the fastest decrease in x-values
(A) $y=-3 \log x$
(B) $y=2 \log x$
(C) $y=\frac{-1}{3} \log x$
(D) $\mathrm{y}=\frac{1}{2} \log \mathrm{x}$
8. Which graph best represents the function $y=\ln x$?
(A)

(B)

(C)

(D)

9. Which graph best represents the function $y=7 \log x$?
(A)

(B)

(C)

(D)

10. What is the logarithmic form of $(\sqrt{2})^{6}=8$?
(A) $\quad \log _{\sqrt{2}} 6=8$
(B) $\log _{8} 6=\sqrt{2}$
(C) $\quad \log _{\sqrt{2}} 8=6$
(D) $\quad \log _{6} 8=\sqrt{2}$
11. \quad Given $7^{x}=14$, which best approximates x ?
(A) 1.15
(B) 1.36
(C) 2
(D) 7
12. Given $7^{x}+5=25$, what is the approximate value of x ?
(A) 0.83
(B) 1.30
(C) 1.54
(D) 1.75
13. Which logarithmic equation correctly represents the exponential equation $10^{7}=x$?
(A) $x=\log 7$
(B) $x=\log 10$
(C) $7=\log x$
(D) $10=\log x$
14. Evaluate the logarithmic expression $\log _{16} 4$.
(A) 0
(B) 0.5
(C) 1
(D) 2
15. Determine the concentration of hydrogen ions in bleach, with a pH of 12.8 .

Recall that $\mathrm{pH}, p(x)$, is defined by the equation
$p(x)=-\log x$, where the concentration of hydrogen ions, x, in a solution is measured in moles per litre.
(A) $1.3 \times 10^{-13} \mathrm{~mol} / \mathrm{L}$
(B) $1.6 \times 10^{-13} \mathrm{~mol} / \mathrm{L}$
(C) $1.3 \times 10^{-12} \mathrm{~mol} / \mathrm{L}$
(D) $1.6 \times 10^{-12} \mathrm{~mol} / \mathrm{L}$
16. Which expression is equivalent to $\ln 52-\ln 13$?
(A) $\ln 39$
(B) $\ln 39 e$
(C) $\ln 4$
(D) $\ln 4 e$
17. Which logarithmic expression is not equivalent to the others?
(A) $\frac{\log 5}{\log 3}$
(B) $\log _{9} 25$
(C) $\frac{\log 25}{2 \log 3}$
(D) $\log _{27} 100$
18. The equation of the logarithmic function that models a data set is $y=8.2+0.7 \ln x$. Extrapolate the value of y when $x=22$.
(A) $y=10.4$
(B) $y=10.8$
(C) $y=11.1$
(D) $y=11.3$

Selected Response Answer Sheet (UPPERCASE letters please!!!)

1. ___D
2. ___A
3. ___C
4. \qquad 8. __B
5. ___B
6. \qquad 9. ___B
7. ___B
8. __B
9. ___C
10. ___C
11. \qquad
12. ___B
13. ___D
14. \qquad
15. ___C
16. \qquad

Constructed Response: Answer all the questions that follow showing all work.

1. Technetium-99, a radioactive isotope used in nuclear medicine, has a half-life of 6 hours. Set up an equation, and algebraically determine how long it would take for 500 micrograms of Technetium- 99 to reduce to 100 micrograms. (6 marks)
$y=a \times b^{\frac{t}{h}}$

$$
\begin{aligned}
& \therefore 100=500\left(\frac{1}{2}\right)^{\frac{t}{6}} \\
& \frac{100}{500}=\frac{500\left(\frac{1}{2}\right)^{\frac{t}{6}}}{500} \\
& 0.2=0.5^{\frac{t}{6}} \\
& \log 0.2=\log 0.5^{\frac{t}{6}} \\
& \log 0.2=\frac{t}{6} \log 0.5 \\
& 6(\log 0.2)=6\left(\frac{t}{6} \log 0.5\right) \\
& 6 \log 0.2=t \log 0.5 \\
& \frac{6 \log 0.2}{\log 0.5}=\frac{t \log 0.5}{\log 0.5} \\
& t \approx 13.93 \mathrm{yrs}
\end{aligned}
$$

2. A laboratory assistant decided to observe the reproductive properties of a new strain of bacteria. The assistant started observing a population of 300 bacteria and noted that the bacteria population doubled every 5 minutes. Write a function to model this situation and use it to algebraically determine the time it will take for the population to reach 18000 bacteria.(6 marks)
$y=a \times b^{\frac{t}{c}}$

$$
\begin{aligned}
& \therefore 18000=300(2)^{\frac{t}{5}} \\
& \frac{18000}{300}=\frac{300(2)^{\frac{t}{5}}}{300} \\
& 60=(2)^{\frac{t}{5}} \\
& \log 60=\log (2)^{\frac{t}{5}} \\
& \log 60=\frac{t}{5} \log 2 \\
& 5(\log 60)=5\left(\frac{t}{5} \log 2\right) \\
& 5 \log 60=t \log 2 \\
& \frac{5 \log 60}{\log 2}=\frac{t \log 2}{\log 2} \\
& t \approx 29.53 \mathrm{~min}
\end{aligned}
$$

$3 . \$ 2500$ is invested at 2.6% per year, compounded quarterly. Algebraically determine how long it will take for the investment to reach $\$ 3000$. Use the compound interest formula: $A=P(1+i)^{n}$
$i=\frac{0.026}{4}=0.0065$
$3000=2500(1.0065)^{n}$
$\frac{3000}{2500}=\frac{2500(1.0065)^{n}}{2500}$
$1.2=1.0065^{n}$
$\log 1.2=\log 1.0065^{n}$
$\log 1.2=n \log 1.0065$
$\frac{\log 1.2}{\log 1.0065}=\frac{n \log 1.0065}{\log 1.0065}$
$n=\frac{\log 1.2}{\log 1.0065} \approx 28.14053262$ quarters $\approx 7.04 \mathrm{yrs}$
4. A laboratory that uses radioactive substances received a shipment of 500 g of thorium-227. Only 318.16 g of the thorium- 227 remained 12.0 days later. Determine the half-life of thorium-227 algebraically using logarithms, to the nearest tenth of a day. The half-life equation is

$$
A=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}
$$

$318.16=500\left(\frac{1}{2}\right)^{\frac{12}{h}}$
$\frac{318.16}{500}=\frac{500\left(\frac{1}{2}\right)^{\frac{12}{h}}}{500}$
$0.63632=0.5^{\frac{12}{h}}$
$\log 0.63632=\log 0.5^{\frac{12}{h}}$
$\log 0.63632=\frac{12}{h} \log 0.5$
$h(\log 0.63632)=h\left(\frac{12}{h} \log 0.5\right)$
$h \log 0.63632=12 \log 0.5$
$\frac{h \log 0.63632}{\log 0.63632}=\frac{12 \log 0.5}{\log 0.63632}$
$h \approx 18.4 \mathrm{days}$
5. Algebraically solve for $\mathrm{x}: \quad 2^{3 x+2}=7^{x-3}$ (6 marks)
$\log 2^{3 x+2}=\log 7^{x-3}$
$(3 x+2) \log 2=(x-3) \log 7$
$3 x \log 2+2 \log 2=x \log 7-3 \log 7$
$3 x \log 2+2 \log 2-2 \log 2=x \log 7-3 \log 7-2 \log 2$
$3 x \log 2=x \log 7-3 \log 7-2 \log 2$
$3 x \log 2-x \log 7=x \log 7-x \log 7-3 \log 7-2 \log 2$
$3 x \log 2-x \log 7=-3 \log 7-2 \log 2$
$x(3 \log 2-\log 7)=-3 \log 7-2 \log 2$
$\frac{x(3 \log 2-\log 7)}{3 \log 2-\log 7}=\frac{-3 \log 7-2 \log 2}{3 \log 2-\log 7}$
$x \approx-54.1$
6. Algebraically solve for $\mathrm{x}: \quad e^{x+1}=9$ (3 marks)
$\log e^{x+1}=\log 9$
$(x+1) \log e=\log 9$
$\frac{(x+1) \log e}{\log e}=\frac{\log 9}{\log e}$
$x+1=\frac{\log 9}{\log e}$
$x+1-1=\frac{\log 9}{\log e}-1$
$x=\frac{\log 9}{\log e}-1$
$x \approx 1.197224577$

